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Introduction

It has become apparent fzom recent work, for both opposed and coflow flame spread (refs. 1-4),

that the flame tip controls much of the subsequent flame spread dynamics. The "flame anchoring

region" or "lean-limit zone" or "weakly premixed flame foot zone" of the late 1970s and early

1980s has acquired a definite theoretical structure, commonly referred to as the "triple flame".

Though its existence is unquestionably acknowledged, its importance in practical situations of

flame attachment, flame spread, etc. has not been clearly established.

The purpose of this project is to examine in detail the influence of the triple flame structure on

the flame spread problem. It is with an eye to the practical implications that this fundamental

research project must be carried out. The microgravity configuration is preferable because

buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case

can be made for comparing our predictions - which are zero -g - and any projected experiments.

Our research into the basic aspects will employ two models, both of the general kind illustrated

in Fig. 1. In one, flows of fuel and oxidizer from the lower wall are not considered. In the

other, a convective flow is allowed, see Fig. 1. The non-flow model allows us to develop

combined analytical and numerical solution methods that may be used in the more complicated
convective-flow model.

Zero-Flow Model:

A preliminary analysis of this model is found in ref. 5. We are presently developing a more

comprehensive version. The difficult part occurs in the construction of the outer solution, which
must be matched to the inner flame-zone solution. The forward flame zone, in which the

reaction rate is a maximum, is the elliptic (2-D) triple point region. Downstream of this is the

trailing diffusion flame (DF). The elliptic, non-linear triple-point-zone equation must possess

spatial boundary conditions on all of its four sides. The top side is straightforward, the two

lateral sides are more difficult. The bottom side is by far the most difficult. Here, the nonlinear

elliptic triple-point-zone equation must match to the homogeneous quenching-zone solution (there
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is no reaction here). But this region itself cannot be solved unless a suitable set of boundary

conditions at its top edge is found (see Fig. 2). An iterative solution method must be employed.

A "reasonable" boundary condition is postulated for the top of the quench zone. Then the quench

equation is solved. The inner-zone equation is matched to this and the other outer-zone solutions.

A new and more accurate temperature distribution across the lower zone is obtained, the quench

zone equations are solved and the process is repeated. The solution can be compared with the

full numerical solution for the quenching distance and the quenching temperature, as well as heat

fluxes to the solid boundaries.

Convective-Flow Model:

Most of our effort on this project has centered on the convective flow case. We have developed

a numerical solution code with variable meshes and other numerical refinements. The model

problem is identical to the zero-flow case except for the presence of the constant convective flow
from the lower reservoirs. A somewhat artificial zero-infiltration boundary conditions is applied,

as in the zero-flow case [i.e., neither species can diffuse into the other stream prior to its arrival
J_A ...... ___ _ ..1 AI---Aue_ermlaeU the _-'- flamethrough the exit plane]. By numerical experimentation, we have mat utptt;

structure is most clearly evident when both the nondimensional activation energy I_ and the

Damk6hler number D are large. As D increases, the flame tip moves closer to the cold wall.

This can be offset by increasing the flow rate s. When the increases of s and D are

coordinated in order to keep the stand-off (or quenching) distance constant, the triple flame

structure becomes prominent. In our notation, D and s are independent of one another, since

length scales are measured with the burner width. Hence, an increase of e for fixed D merely
shifts the entire structure further downstream, whereas an increase of D (for fixed s) moves

it closer to the cold surface while simultaneously shrinking it laterally. In neither of these cases

is the triple flame structure prominent. We can compare the sequences of figures given by Figs.

3.a-e, 4.a-c, 5.a-e. See also the full plots of temperature and fuel and oxidizer mass fractions in

Figs. 6.

Once the fundamental details of the zero-flow model are clarified, similar methods may be

applied to the convective flow model.

Simplified Flame Spread Model

Here we examine a simple solution for the mixture fraction, Z, for the case of a model

configuration that resembles the flame spread problem. A discussion, and some results, for this

simple model are given in ref. 6. Once the Z contours are calculated (we vary the input of fuel

from the fuel wall, see Fig. 7 ), we choose a eonstant-Z flame contour (see Fig. 7 ) onto which

we superpose the flame quenching information from the two previous model problems and the

flame-shape information. In this way, a set of hypothetical flame shape plots can be made, as

shown in Fig. 7,_ These can be used to aid in the prospective experimental visualization of

triple flame structures in actual flames. It may also provide clues for why these structures are

very difficult to see in practice for flame spread over solid fuels. For liquid fuels, triple flame

structures can actually be observed, see ref. 7.
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